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ABSTRACT: We study superconformal defect lines in the tricritical Ising model in 2 di-
mensions. By the folding trick, a superconformal defect is mapped to a superconformal
boundary of the A/ = 1 superconformal unitary minimal model of ¢ = 7/5 with Dg — Ej
modular invariant. It turns out that the complete set of the boundary states of ¢ = 7/5
D¢ — Eg model cannot be interpreted as the consistent set of superconformal defects in the
tricritical Ising model since it does not contain the “no defect” boundary state. Instead,
we find a set of 18 consistent superconformal defects including “no defect” and satisfying
the Cardy condition. This set also includes some defects which are not purely transmissive
or purely reflective.
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1. Introduction and summary

Conformal defects or interfaces in a conformal field theory are a kind of generalizations
of conformal boundary conditions [[]-[]. They describe the universality classes of the do-
main wall at which two different or same conformal field theories are connected. These
conformal defects appear several different contexts in physics. They describe impurities in
condensed matter physics. They also appear in the string theory; in AdS/CFT correspon-
dence some branes in AdS spacetime correspond to defects in conformal field theory (see
for example [ff]). Partial list of recent works on the conformal defects includes [ [5].

One of the main tools to investigate conformal defects is the folding trick [[Il, f]. By this
prescription, the problem is mapped into the conformal boundary problem in the direct
product theory.

However it is not easy to get the classification of the boundary states in the folded
theory even if the original theory is two minimal models. This is because the product
of two minimal models is not a minimal model in general, and the conformal boundary
problem is not soluble in general. The systematic ways to treat these boundary states are
limited. One way is to consider the tensor products of the boundary states in each side.
These tensor product states are classified because the conformal boundaries in minimal
models are classified [, [[7]. These tensor product states are purely reflective defects in
the unfolded theory. The other way is to consider the permutation boundary states [[[]



when two CFTs in each sides are the same. These states are purely transmissive defects
(topological defects) in the unfolded theory. Therefore it is not easy in general to obtain
the defects which are not purely reflective or purely transmissive.

There are a few exceptions. For example conformal defects between two critical Ising
models are mapped into conformal boundaries of certain ¢ = 1 CFT [B]. This boundary
problem is actually solved. There are a few more examples in which the conformal defects
problem can be systematically treated [B, B, [[d].

In this paper we address defects between two tricritical Ising models [I9, P0]. The
tricritical Ising model has N/ = 1 superconformal symmetry. Actually it is the first model
of the V' = 1 superconformal unitary minimal series (m = 3 in eq.(A.T)).

The direct product of two tricritical Ising models is not a minimal model, so it is
difficult to classify all the conformal defects. However, when we require superconformal
symmetry, the situation changes. The direct product of two tricritical Ising models with
spin structure aligned is again a N' = 1 superconformal minimal model: ¢ = 7/5 (m = 10 in
eq.(A1))) Dg — Eg modular invariant theory. Thus we can treat this problem systematically.

At first sight, one seems to be able to solve the superconformal defect problem by just
classifying the conformal boundary in this auxiliary theory using the Cardy condition [[[§,
[[7. However it turns out not to work. There is no “no defect” boundary state in this
classification which is expected to exist.

In this paper, we employ the following two as the criteria for the consistent set of
superconformal defects.

1. It includes “no defect.”
2. It satisfies the Cardy condition.

As a result, we found 18 superconformal defects (see eq.(B.9)). This set of superconformal
defects includes purely transmissive ones and purely reflective ones as well as interme-
diate ones. We calculated transmission coefficient (see eq.(B.14)), introduced by [f], for
these defects.

The construction of this paper is as follows. In section f] we review general techniques
treating defects: the folding trick, the Cardy condition and so on. Section ] is the main
section of this paper where we find 18 superconformal defects in the tricritical Ising model.
We collect some properties of ' = 1 superconformal minimal models in appendix [4. In
appendix [ we classify all the boundary state in ¢ = 7/5 Dg — Eg theory.

2. (Super)conformal defects in 2-dimensional conformal field theories

In this section, we review some basic tools to treat the (super)conformal defects in two
dimensional CFTs, like the folding trick and boundary states.
2.1 (Super)conformal defects and the folding trick

Consider a defect line on the real axis between two conformal field theories ( CFTs ): CFT;
defined on upper half plane and CFT5 on the lower plane. The defect is called ‘conformal’



if the current generating translation tangential to the defect is preserved across the defect.
And it is called ‘superconformal’ if supercurrents G,G are preserved across the defect.
These conditions are written as

T(l) (Z) - T(l) (Z) T(2) (Z) - T(2) (2)|at the defect
G(l) (Z) - 77@(1) (Z) = g(G(z) (Z) - 77@(2) (2))|at the defect (21)

where n, & = £1.

There are two extremal cases of the gluing conditions (R.]). One is purely transmissive
defects; holomorphic and anti-holomorphic currents are continuous across the defects in-
dividually. This kind of defects is sometimes called “topological defects” in the literature.
When two CFTs are the same, the simple example of purely transmissive defect is “no
defect.” The other is totally reflecting defects; each side of (R.1)) is zero. In this case, the
two CFTs are decoupled and the defects can be considered as (super)conformal boundaries
of each CFT.

In order to treat defects, it is convenient to use “folding trick.” By folding the two
CFTs along the defects, we get the folded theory CFT; ® CFTy with boundary. CFT means
the CFT obtained by exchanging holomorphic and anti-holomorphic degrees of freedom
in CFT. The defect becomes the boundary of this folded theory. Actually the gluing
conditions (R.1) can be rewritten as

T(l) (Z) + T(2) (Z*) = T(l) (Z) + T(2) (Z*)|at the boundary»
GO (2) + G (%) = n(GD(2) + nGP (%))t the boundary- (22)

These conditions are the (super) conformal boundary condition that the boundary states
in CFT; ® CFT5 should satisfy. Therefore defects between two CFTs can be considered as
boundary states in the folded theory.

In this paper we only treat left-right symmetric theory i.e. CFT = CFT. So we just
write T (z) instead writing T (2*).

Here we make a remark about a subtlety for the “direct product” of two supercon-
formal field theory. The naive direct product of two superconformal field theories is not a
superconformal field theory. This is because there is a sum of two SUSY currents with two
different spin structures (NS or R) in the naive direct product theory. Actually in order
to satisfy eq.(B-1)), G and G® (and GM) and G®) must have the same spin structures
(see figure [).

Therefore when considering superconformal defect, we will employ the direct product
theory with aligned spin structure, denoted by D(CFT; ® CFTy), as the auxiliary theory
instead of the naive direct product theory. This is justified as follows. The defect operator
F is a map from the Hilbert space of CFTy to that of CFTy. Since F' preserve the
supersymmetry, it must preserve the spin structure i.e. the periodicity of the SUSY current.
Namely it maps an NSNS state to an NSNS state and an RR state to an RR state; it does
not map an NSNS state to an RR state or an RR state to an NSNS state. Thus, F' can be
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Figure 1: Two half cylinders connected by the defect. The spin structure (periodicity of SUSY
current G) must be the same in order to preserve the supersymmetry.

written as

F= Z Ca,b|a><b|+ Z Ca’,b’|a/><b/|' (23)

a,beNSNS a’,b’eRR

with some coefficients cqp, ¢ iy After folding, F' becomes a state in the folded theory as

Y=Y capla)@[b)+ Y cayld) ). (2.4)
a,beNSNS a’ ,b'eRR
This state |[F') can be embedded in D(CFT; ® CFTy), because the spin structure is aligned
in |F). The gluing condition (R-1)) implies that | F') should be written as a linear combination
of the superconformal Ishibashi states. Moreover the consistency of the rectangular torus
with two parallel defects implies the Cardy condition. So we can work in D(CFT; ® CFTs)
as far as the Cardy condition concerns.

This prescription may not be perfect. As we will see, the complete classification of
the superconformal boundary in D(CFT; ® CFT3) is not a complete classification of the
defects when both of CFT; and CFT5 are the tricritical Ising model. We will require that
the “no defect” boundary state is included and find a set of the boundary states which
satisfies the Cardy condition. This set of the boundary states may not be a consistent set
of the boundary states; for example, they may not satisfy the consistency condition of the
bulk-boundary OPE in D(CFT; ® CFTs). The safest way to consider this OPE condition
should be to deal with operators in unfolded picture.

If the folded theory CFT; ® CFTy (or D(CFT; ® CFTy)) is a rational conformal
field theory, we can effectively use the boundary state formalism and expect to get some
classifications of the boundary states (or defects in unfolded picture). In the next subsection
we just give a quick review of the boundary states in a rational conformal field theory.

2.2 (Super)conformal boundary states and the Cardy condition

Consider a rational conformal field theory with chiral algebra A (in our case, superconfor-
mal symmetry), and the boundary condition which preserve A out of A®.4. A simple way
to preserve this chiral algebra is to impose the gluing conditions for the spin s currents J
of A at the boundary on real axis as

J(2) = J(Z) =z (2.5)



The upper-half plane is mapped into infinitely long strip with width L by the transformation
w=t+1i0 = %log z. Imposing the periodic boundary conditions in the ¢ direction,
t ~ t+T, the strip becomes finite cylinder of circumference T and length L. Some boundary
conditions a and b are imposed on the two boundaries, ¢ = 0 and o = L, respectively.
The partition function Z,;, in the cylinder can be calculated in two ways. Firstly
consider t as time-direction. Then the cylinder can be interpreted as worldsheet of open
string propagating t-direction. The Hamiltonian is given in terms of a Virasoro generator
in z-plane, 7 (Lo — 57). The open string Hilbert space, denoted by H,p, can be decom-
posed into the irreducible representations of the single chiral algebra A since the boundary
condition preserves A. In other words there exist non-negative integers n;b and H,y is

written as
Hap = EP nlyHi, (2.6)
i
where H; are irreducible A-modules. The partition function can be written using the
moduli parameter q := 2™, 1 := % as
Zap = Tr ez o5 = I ghoTa = Ei:nﬁ,bxj'(q), (2.7)

where x;(q) is the character of the representation H; defined as
xj(a) = Trg™ ==, (2.8)

Secondly if we consider o direction as time, the cylinder can be considered as worldsheet
of closed string propagating o-direction. The cylinder is mapped into an annulus in £-plane
by the transformation & = exp(—2miw/T'). In this interpretation, boundaries a,b become
initial and final states, |a) and |b) respectively. These boundary states |a), |b) should satisfy
the gluing conditions (R.5) which becomes

(Jn - (_1)sj—n) |a) =0, (2.9)

in £-plane. Solutions to (R.9) are spanned by special states called Ishibashi states [21), 9.
Let H be the closed string Hilbert space. Then the Ishibashi states in H are

{15y =D 16, N) @ U[(j, N)) : H; @ H; € M}, (2.10)
N

where [7;0) is a highest weight state and |j; N) are orthonormal basis of H;. And the
anti-unitary operator U is defined by

*

Ulj;0) = |5;0) , Ud, = (=1)°J,U, for any J,. (2.11)

The closed string Hamiltonian is given by 2T“(Lo + Ly — 15) in &-plane. The partition
function can be written as

Zop = {algzLotLo=12)|p), (2.12)



where § = e>™7 and 7 = —1. If we express two boundary states |a), |b) as linear combina-

tions of the Ishibashi states,

oy =Dl 1) =2l (2.13)

J

then the partition function can be expressed as

Zy =Y i@ = Y i el ST x(a)- (2.14)
J J.J’
Here we used the fact
gL Tn— <Y . -
((jlgzForlomi2)|5)) = 6; 5x;(d), (2.15)

and the modular transformation rule for the character x;

i@ =87 x(a)- (2.16)
-

For the consistency of the theory, Z,;, calculated in two different ways must be identical.
If we assume the characters are linearly independent, eq.(R.]) and eq.(P.14) imply

=SSt (2.17)
J

This equation gives non-trivial condition on the coefficients ¢l since nf:b are non-negative
integers; this is called Cardy condition.
Actually the characters are not linearly independent in the auxiliary theory in this

paper. There are linear relations among m = 10 superconformal characters

(10) (10) __ _ (10) (10)
X115 T X111 = X1,31 T X1,37
10 10 10 10
X£,2,)1 + X5«,2,)7 = X5«,3,)4 + X£,3,)87 r=2,4,6,8. (2.18)

Thus eq.(R.17) is not necessary for the equality of eq.(R.7) and eq.(R.14) , and the Cardy
condition is a little bit relaxed. But still the equality of eq.(R.7) and eq.(R.14) gives a
non-trivial constraint.

3. Superconformal defects in the tricritical model

3.1 Tricritical Ising model and its folded theory

The tricritical Ising model is the first model (m = 3 in eq.(A.1])) of the NV = 1 unitary
minimal series. Its central charge is ¢ = 1—70. The toroidal partition function of this model
is written as

1 m=3
Zui =5 2 Itis 1 (3.1)

rt,s



(m=3)

where x,, ;' are characters whose explicit forms are written in appendix A.
Consider the product theory of two tricritical Ising models with spin structure aligned,
denoted by D(tri ® tri). Its toroidal partition function is expressed as

1 (3) (3) 3) 3) 2
ZD(tri@tri) :Z Z |:|X7«1,1731Xr2,1,32 + Xr1,3,31Xr2,3 33|

r1,81,72,52ENS

(3) (3) (3) 2
+ ‘Xr171781xr273 82 + Xry,3, 51Xr2,1,52’

1 3 3
+ Z Z 2’X£’1?2,81X£’2?2782’2' (32)

r1,51,72,52€ER

Note that D(tri ® tri) is different from the naive direct product of two tricritical Ising
model, which is denoted by tri ® tri.

Actually D(tri ® tri) is also an A/ = 1 minimal model. The central charge is ¢ = %
(m = 10). Therefore the tensor product of two representations of NS (or R) algebra with
¢ =T7/10 (m = 3) can be decomposed into the representations of ¢ = 7/5 (m = 10) algebra.

This decomposition can be explicitly seen from the character relations as follows.

(10) (10) (10) (10)

Xl,{,l 1,1,1 T X1,31 ng), 11T Xo35 1t Xo,11 T X135
Xﬁ,:axﬁ,s + ng?), 3Xf?)) Xgl?)l + X$,3,)5 + Xg,l,)l + ng,)s’
Xﬁ,?,xg,s + ng?)) 3Xﬁ Xg?,)s + Xgl??)l + XS% + Xglg,)l’
Xﬁ,l % 1+ gg?)) Xﬁ,l = gl?)s + Xs() 3)1 + Xs() 1)5 + Xglg,)l’
Xﬁ,lXﬁ 3+ ngg ng,:’, Xg??l + Xé,za,)sa
XS{JX?% 3 ngg 1X§:ﬁ,3 Xgi)s + xé}?,)la
ngg 4X§?%,4 X§13)4 + Xs()%g,)@
ngg 2X$,2 Xz(),lg)4 + X%g,)@
ngg 4X§:2,2 Xélg)4 (3.3)

These relations are checked using the explicit form of the characters ([A.§)-(A.9) by
q expansion.
One can rewrite the partition function (B.2) in terms of m = 10 characters using (B.J) as

_ (10) (10) (10 ) (10) |2 (10) (10) (10) (10) 2
Zp(tri@tri) = Z [IXi,e1 + X007 T Xoe1 + Xoerl” + IXae1 + Xau7 T Xre1 + Xa,07]
=13
2l P 2l + 2 42 10+ 12+ 4S9, 2
X5t1 X5,t,7 X124 X128 X324 X3,2,8 Xs
1 D A E. 10
=5 Y NENEXOXk (3.4)
r+s+t=odd
F+5t+t=odd

where Ng? and NV, sEg stand for Dg -type modular invariant of @(2)8 and Eg -type modular

invariant of @(2)10 respectively. Therefore we conclude that the tensor product with
aligned spin structure D(tri @ tri) is ¢ = 7/5, D — Eg theory.



We can classify the boundary states in this theory following [1d, [[7]. The result is
written in appendix [§. We obtained two distinct complete sets of boundary states. However
neither of these two sets can be interpreted as a complete set of the superconformal defects
in the tricritical Ising model. This is because they do not include “no defect.” Another
problem is that D(tri ® tri) includes twice as many Ramond states as unfolded theory as
seen in eq.(B.3). When unfolding, a state in D(tri ® tri) are mapped to an operator in the
tricritical Ising model. If the boundary states include both ¢t = 2 and t = 2 Ramond states,
it is impossible to map those states to operators in the tricritical Ising model while keeping
the super Virasoro action and inner product structure.

In the next subsection, we propose a set of boundary states which are free from
these problems. Namely this set contains the “no defect” boundary state. The states
in this set only include t = 2 states as Ramond states, but do not include ¢ = 2 Ra-
mond states.

3.2 18 superconformal defects in the tricritical Ising model

In this subsection, we consider the set of the boundary states which satisfies the follow-
ing criteria.

1. It includes “no defect.”

2. It satisfies the Cardy condition.

We find a set of 18 boundary states which satisfies the above criteria. This is the main
result of this paper.

Let us first explain “no defect” boundary state. Boundary state |N) in D(tri ® tri)
which corresponds to “no defect” in the tricritical Ising model can be chosen as (see ap-
pendix [B for notation used in this section)

1
V2
=1(1,1,1)10)) +[(1,3,5)10)) + |(1,2,4)10))

+1(3:1,1)10)) +[(3,3,5)10)) + (3:2,4)10))
—[(7,1,1)10)) = 1(7,3,5)10)) — [(7,2,4)10))
— (9,1, 1)10)) = [(9:3,5)10)) — [(9:2,4)10))- (3.5)

Presence of “no defect” has the same effects as absence of defects. Therefore the annu-

1 —
|N>:§|2767NS>+ |271;NS>+|271;R>

lus amplitude of two “no defect” boundary condition is equal to the toroidal partition
function of the unfolded theory i.e. the tricritical Ising model. Actually it can be checked
explicitly that

(N|g2LotLo—12)|N) = Zui(§) = Zui(q), (3.6)

is satisfied with Z; of eq.(B.1)). In section B.3, we check that the transmission coefficient
T for |N) equals to 1. Moreover |N) can be expanded as (see (B.29) and (B.16)))

Ny = > la)®la). (3.7)

|a> EHiri



This states corresponds to identity operator I before the folding.

I= > la)al. (3.8)

‘(l>€Ht7‘i

Note that “no defect” is not consistent (in the sense of Cardy condition) with 36 boundary
states in D(tri ® tri) (see appendix [B).

Next let us consider the set of boundary states which includes the above “no defect”
boundary state and satisfies the Cardy condition. We found the following 18 boundary
states which meet the criteria.

%m,p(b); NS) £ |a p(b): R),

where (a,b) = (1,3),(3,3), (5,3), (6,3), (2,6), (4,6),

1 —
Ax-type : [(a,0))a, = §|a, b; NS) +

%m,p—l(b);w»

where (a,b) = (1,1),(3,1),(5,1),(6,1),(2,2), (4,2).
(3.9)

B-type : |(a,b))p = |a,b; NS) +

Here we use the function p defined in eq.(B.§). Actually one can identify |(2,6))4, as the
“no defect” boundary state. On the other hand, the Cardy condition can be checked as

follows. Let us define the number nzg”lix)’(a,’b,’y), (X,Y = AL, B) as

x{(@ vz Er D @ W)y = 37 ) v Xrea(@): (3.10)

[r,t,s]

These coefficients are calculated by using (B.21)) and the relations (B.7)(B.11]) as

r,1,s s
MabAs) (@', as) = Maa (D6)pm) o) (o),

r,2,8 s
Mab,Ax),(a' b Ax) — ’<D6)nb,p(b’)(Eﬁ)7

rt,s o 7"4 t,s
Mab,A) (@ b, Az) = MabAs),(a/,AL)

717
b As) (' .B) = Moo (Do) (Ee),

r,2,8 r B
MabAz) (@ b,B) ~ Ma '(Dﬁ)”b 1) (Fo6)s
r,1,s .
n(a,b,B)7(a/7b/7B) - (D6) l(b) (b )(E6)7

727 _
nza,be),(a’,b’,B) - Znaﬂ'(DG)nb,p*l(b’)(E6)7
7,3, 10—r,1,12—s (3 11)

(@b, X), (@ b Y) ~ ™a,b,X),(a’ b Y)"

As a result all the coefficients n ) are shown to be non-negative integers, namely,

the Cardy condition is satlsﬁed( r%ﬁe)r(gf(fre we conclude that this set of the boundary states
meet the criteria.
It seems that this set of 18 boundary states is the maximal one which meets the criteria.
In this paper, we did not consider the consistency of the bulk-boundary OPE. The

18 boundary states we obtained here may not be consistent in OPE in the bulk theory



D(tri ® tri), since there are other two sets of 36 boundary states which satisfy the Cardy
condition. However this is not a problem because what we want to do is to obtain the
consistent set of defects in tricritical Ising model, and it is different from the consistent
boundary of D(tri®tri). Hence, OPE consistency should be checked in the unfolded theory
(tricritical Ising model) instead of D(tri ® tri). It is an interesting future problem.

3.3 Reflection and transmission coefficients

Let us now consider reflection and transmission coefficients R, 7 for superconformal defects
obtained above. Reflection and transmission coefficients are defined and investigated in [g].
These coefficients in general are defined as follows. First, we consider the matrix R;; for a
boundary state | B) defined as

(0] L LS| B)
Ryj = ———~—= (3.12)
’ <0\B>
Then, the reflection and transmission coefficients R, 7 are defined as
2 2
R = R11 + Rao), T .= Rio + Ra1), 3.13
Y 02( 11 22) o 02( 12 21) (3.13)

where c¢; and ¢ are the central charges of CFT and CFT5 respectively. In our problem,
¢ = ¢y = 7/10. These coefficients satisfy the relation R + 7 = 1, so we will only write
down 7.

These coefficients for each defect in (B.9) can be calculated as

T-1 @A, (46 Ay
T-0 )8, 13, 1), 5,1)5, (6,1)5
- ﬁ LA 133 634 16.3) 4.,
v3 @0 42 (3.14)

T 3+3

So this set includes totally transmitting and totally reflecting defects as well as intermedi-
ate ones.

Totally reflecting (7 = 0) and totally transmitting (7 = 1) defects can be expressed
in terms of factorized Ishibashi states and permutation ones, respectively, of the tensor
product of the two tricritical Ising models. Factorized Ishibashi states can be expressed as

(r,t, 5,7t 8" )3)) R (3.15)
= Z \(r,t,8)3, N) @ U|(r,t, 8)3, )|V @ [|(, ¥, 8')3, M) @ U|(r', ¥/, )3, M)] ),

while permutation Ishibashi states are written as

|(r,t,s,7,¢,8)3))T (3.16)
- Z (£, 8)3, N) @ U|(r,t, 8)3, M)V @ [|(r, 8, 8)3, M) @ U|(r,t, )3, N)] ).

— 10 —



The overlaps among these Ishibashi states become

(Lo+Lo— 12)|(

R<<(7"1,t1, 817T17t17 81)3|q2 T‘g,tg, 82,7"5,75/2, 8/2)3>>R

= Olry,t1,51],[r2,t2,52) 01 1], 5%, [rz,tz,sz]xsfi?tl,sl(Q)Xf«?tll’sfl (@), (3.17)
(1, b1, 81,71, 81, 51)31G2 FOFEOT) | (g, 9, 59,72, b, 82)3)) 7

= Sirstr il frata el oo, (D07 1y o (@) (3.18)
r(((rt, 5,78, 8)3]g2 P Lo 1) (1, 5,7, 1, 5)3))

= XL (@) (3.19)

Some linear combination of these Ishibashi states can be expressed in terms of Ishibashi
states in the Dg — Eg theory.

[(1,1,1,1,1,1)3))r + [(1,3,1,1,3,1)3))7

=1(1,1,1)10)) = (9,3,5)10)) — (9,1, 1)10)) + [(1,3,5)10)),
1(1,1,3,1,1,3)3))r +(1,3,3,1,3,3)3))7

=1(3,1,1)10)) = [(7,3,5)10)) — [(7,1,1)10)) + [(3,3,5)10)),
1(1,1,1,1,1,D)3))r — [(1,3,1,1,3,1)3))r

= 1(1,1,1)10)) = [(9,3,5)10)) + (9,1, 1)10)) — [(1,3,5)10)),
1(1,1,3,1,1,3)3))r — [(1,3,3,1,3,3)3))r

=1[(3,1,1)10)) — (7,3,5)10)) + (7,1, 1)10)) — (3, 3,5)10)),
(1,2,4,1,2,4)3))7 = |(1,2,4)10)) — (9, 2,4)10)),
1(1,2,2,1,2,2)3))7 = [(3,2,4)10)) — [(7,2,4)10)),
1(1,1,1,1,1,3)3))r — [(1,3,1,1,3,3)3))r = [(5,1,1)10)) — [(5,3,5)10)),
1(1,1,3,1,1,1)3))r — (1,3,3,1,3,1)3))r = [(5', 1, 1)10)) — (5, 3,5)10))- (3.20)

This identification can be justified by comparing the overlaps among these states in both
expressions. This can be checked using the character identities (B.J) and the followings.

10 10 10 10) \, ~ 3 3 2
<X§,1,)1 + Xs(),3,)5 - Xs(),1,)1 - X§73,)5>(q) = <X§,i,1 Xg :2, 1) (@),
10 10 10 10) \ , ~ 3 3 -
<X:(J,,1,)1 + Xg,?,,)s - Xg,l,)l - X:(’,,325>(Q) = <X§,{,3 Xg,:z,,s) (@) (3.21)
It was checked up to some order by the ¢ expansion.
Now we will give the explicit expression of totally transmitting (reflecting) defects in

terms of permutation (factorizing) Ishibashi states using (B.2().! For totally transmitting
defects,

‘(27 6)>Ai = ’(17 17 17 17 17 1)3>>T + ‘(17 37 17 17 37 1)3>>T (3'22)
+ |(17 1,3,1,1, 3)3>>T + |(17 3,3,1,3, 3)3>>T
+ [1(1,2,4,1,2,4)3))r + [(1,2,2,1,2,2)3)) 7],

!Note that if we expand a totally transmitting (reflecting) defect in terms of Ishibashi states in the
Ds — Eg theory, only the linear combinations those can be expressed via () in terms of permutation
(factorizing) Ishibashi states appear.
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1(4,6)) 4, = V200 [|(1,1,1,1,1,1)3))7 +|(1,3,1,1,3,1)3))7] (3.23)
— V20— [|(1,1,3,1,1,3)3))r + |(1,3,3,1,3,3)3)) 7]
+ [V200s [(1,2,4,1,2,4)3)) — vV20a_[(1,2,2,1,2,2)3))7],

5if

where a4 :

For totally reflecting defects,

’(171)>B :2\/62__[’(1,1,1,1,1,1)3»}{— ’(1 3,1,1,3, 1 R]

+2y/ay [[(1,1,3,1,1,3)3))r — [(1,3,3,1,3,3)3)) r]
+57Y4V2[)(1,1,1,1,1,3)3))k — [(1,3,1,1,3,3)3)) 5]
+5_1/4\/§[|(17173’17171)3>> |(1 3,3,1,3, 1)3>>R] (3'24)

1(3,1))p =24/2003 [|(1,1,1,1,1,1)3))r — (1,3,1,1,3,1)3)) &}

200 [|(1,1,3,1,1,3)3))r — [(1,3,3,1,3,3)3)) &
5714V2[](1,1,1,1,1,3)3))r — 1(1,3,1,1,3,3)3)) &)
— 57 Y4V2[)(1,1,3,1,1,1)3))r — (1,3 3,1,3 1)3))r], (3.25)
(5, 1)) =2y/ax [|(1,1,1,1,1,1)3))r — [(1,3,1,1,3,1)3)) ]

—2/a—[|(1,1,3,1,1,3)3))r — |(1,3,3,1,3,3)3))r)
+ 2325 %0 [](1,1,1,1,1,3)3))r — (1,3,1,1,3,3)3)) &)
— 2325140 _[|(1,1,3,1,1,1)3))r — [(1,3,3,1,3,1)3))r], (3.26)

’(67 1)>B = 2\/ ay U(l? 17 17 17 17 1)3>>R - ’(17 37 17 17 37 1)3>>R]
—2/a—[|(1,1,3,1,1,3)3))r — |(1,3,3,1,3,3)3))r)
- 23/251/4@— [|(17 1,1,1,1, 3)3>>R - |(17 3,1,1,3, 3)3>>R]
+ 2525 40 [(1,1,3,1,1,1)3))r — [(1,3,3,1,3,1)3))r]. (3.27)
These four totally reflecting defects can be expressed in terms of boundary states in tri-

critical Ising model. According to Cardy’s prescription [If], there are 6 boundary states in
tricritical Ising model labeled by weights.

0) =274 |(1,1, 1)) + (1,3, )))] + 274 [|(1,1,3))) +1(1,3,3)))]  (3.28)
+al/

5 =274 4 1(1,1,1))) +(1,3,1)
—ai/"(1,2,2))) — a"(1,2,4

550 =2 a2l L L)) + 11,3, 1)) — 27 a0 1 1,1,3) + 1(1,3,3)]

)

1(1,2,2))) +a/*|(1,2,4))

k D] + 274V (1, 1,3) + 1(1,3,3)))]
)

)

(

=) =240} 2011, 1,1)) + (1,3, 1))] — 2740t 2a VA [1(1,1,3)) + (1,3, 3)))]
+a%a(1,2,2))) — ol Pa” Y

—a?aN(1,2,2))) + ozt (1,2,4)),

ol W

1,2,4))),
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) =241, 1, 1) — 10,3, 0] + 244 1(1,1,3))) — 11,3, 3)]

o5 =20l 11,1, 1)) — 11,3, 100)] — 24020 [1(1,1,3) ~ 11,3, 3)]

Here |(r, ¢, s))) are Ishibashi states in tricritical Ising model which is related to the factorized
Ishibashi states as

|(rit, 8,7t/ 8N = |(r,t,5))) @ (', 1, s))). (3.29)

Four totally reflecting defects can be written as

24 D = (100 +13)) 15 +ph e (10+15)).

213,008 = (1) +1D)) & 13 + 1 @ (1) + D),

2/(5,1))5 = (!%> + \§>> ® \1—76> + \%> ® <\0> + y;),

206,00 = (100 +19)) 815 + 5o (175 + 12)). (3.30)

Thus these totally reflecting defects |(a,b))p, (a,b) = (1,1),(3,1),(5,1),(6,1) can-
not be expressed as linear combinations of the factorizing boundary states with non-
negative integer coefficients, though twice of those states 2|(a,b))p can. One possible
interpretation is that the consistent defects are 2|(a,b))p instead |(a,b))p for (a,b) =
(1,1),(3,1),(5,1),(6,1). Even if |(a,b))p are replaced by 2|(a,b))p, those 18 boundary
states satisfy the Cardy condition.
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A. N = 1 superconformal minimal models

./\/C = 1 superconformal unitary minimal models are expressed by the coset model
SU(2)m—20SU(2)2 o .
S5 , (m=3,4,5,...). The central charge is
3 8
=—(1-— . Al
‘T3 ( m(m+2)> (A1)
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A module of this model is labeled by three integers (r,t, s)

r=12,....m—1, t=1,2,3, s=1,2,..., m+1, (A.2)
r+t+ s = (odd integer), (A.3)

under the identification
(ryt,s) ~(m—rd—t,m+2—s). (A.4)

The equivalence class of the equivalence relation (fA.4) is denoted by [r,t,s]. The module
with ¢t = 1 or 3 is in NS sector, while one with ¢t = 2 is in R sector.
The characters are denoted by X%L)s(q) These characters are explicitly written as

follows [R3]. For NS sector (r + s =even)

m m m m -1 o 144" 2 TiT
ch{"™ (q) == X\, (q) + X34 (@) = K (q) ¢ [ - _qqn . q=€"T,  (Ab)
n=1
o) _1
~ (m) m m ~(m 1 1—q¢" 2
o (0) = x0T a) ) = KD a7 T] =0 (A6)
while for R sector (r 4+ s =odd)
() e () — gy TT LT
Chv(",s)(q) T XT’,Z,s(q) - Kﬁ,s)(q) ;!1 1— qn' (A7)
Here the functions K,(T?)(q) and IN(T(”;) (q) are defined as
(m) (m)
K (g) =3 (a7 = g,
neL
_ 2
Alm) [2m(m + 2)n + ms — (m + 2)r] ’ (A8)
i 8m(m + 2)
~ =5 L mn (m) 45 mn (m)
K (q) = Y ((—1) 5 mmghii — ()55 mmg i ) (8.9)
neL

B. Boundary states in Dg — Eg theory

B.1 Boundary states in su(2) WZW model

Here, we summarize some notations and facts on the boundary states in su(2) WZW model
with ADE modular invariants, especially Dg and Fg. For more detailed arguments, see [[7].

Modular invariants of level k su(2) WZW model are all classified 24-Rf]. They are
labeled by ADE Dynkin diagram G with dual Coxeter number ¢ = k + 2. The modular
invariant partition function is expressed using % as

Z% =" Nixexr, (B.1)
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Figure 2: Dg Dynkin diagram.

a\r 1 3 5 5 7 9
1 20 201 5-1/4 5-1/4 Norom 2a_
2 1 1 0 0 —1 —1
3|10l (/1008 51/ —57V4 4008400k
4 | v20o;r —+v200_ 0 0 200 —v20a4
5 | V2ay  —/2a-  2-5Y%a,  —2.5Y%a_ —/2a_ 20y
6 | V2ar —2a_ —2-5Y%*a_  2.5Y%*a, —\2a_ 2ay

Table 1: Boundary state coefficients LDF)) Here oy are defined as ag 1= 5+v5

V55

where x, are the characters of affine Lie algebra su(2)g.

The boundary conditions in su(2) WZW theory which preserve su(2); are also all
classified [[7]. Ishibashi states |r)) are labeled by the finite set & = {r : H, ® H, € H}.
Boundary states |a) in the theory are

0y = 3 Y&y (B.2)

re€ SY:)

where a is the label of the Dynkin diagram nodes. The modular transformation S-matrix
is SZ-(;?) = ’/k%rz sin ,;fz “Intertwiners” ng, ,(G) are defined as follow.

~L Lo—-S r
Zojp = {al@z ot rom i) =3 g (G)xe (), (B.3)

where n/ ,(G) are obtained as

(@) = 3 O D g (B.4)

k
r'e& Sir’

n27b(G) are non-negative integers. Note that 1], satisfies the relation
Uh(G) = ()" (@), (B.5)

for appropriately chosen 7(a).
A, Dyqq, Fg has graph automorphism + and it satisfies the relation

T (@) = (1) (@), (B.6)

Here we summarize these quantities for Dg and Fg diagram. In the Dynkin diagrams
in figure 2 and 3, we express the value of 7 by the colored nodes as 7(o) = 0,7(e) = 1.
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1 2 3 4 5
Figure 3: Fg Dynkin diagram.

b\s | 1 4 5 7 8 11
1 1 9—1/4 il 1 o—1/4 T
V2 V2 V2 V2
2 | 4v332  27Y4 4382 —4V3p2 27Vt 4352
3 [4V66T 0 —4V682 —4v6pZ 0 4603
4| 4vBp 274 ayBp? -3 27V 43P
5 1 _9-1/4 e 1 _9-1/4 1
V2 V2 V2 V2
6 1 0 —1 1 0 ~1

Table 2: Boundary state coefficients Y5 Be)  Here B+ are defined as B4 := %\/ %g.

Vi

e Dg:g=10

— Modular invariant |x1 + x9|? + |x3 + x7|> + 2|x5/%
— Exponents £(Dg) = {1,3,5,5,7,9}.

— Boundary state coefficients Ya(Ds) ave shown in table 1.

Vs
o Eg:g=12
— Modular invariant |x1 + x7/% + |xa + xs/> + [x5 + x11/*
— Exponents E(Fg) = {1,4,5,7,8,11}.
— 7 (1,2,3,4,5,6) — (5,4,3,2,1,6).

— Boundary state coefficients ¥) o6 shown in table 2.

The following relations between intertwiners are useful. The Dg intertwiners n;,
satisfy?

g o (De) = ncll?a_,r(DG).
It is convenient to use the function p: {3,6} — {1,2} as
p(3) :=2, p(6) :=1.
The Eg intertwiners satisfy for b,b’ € {3,6}
gy (Eg) = n;(b)7p(b’)(E6) + nﬁﬁp(b/)(Eﬁ),
1, o) (E6) = 1050y 1 (Es),
and for b = 3,6 and arbitrary b’

nab/ (Eﬁ) = né?b,_s(EG)

2Similar relations for Deven, E'7, Eg are also satisfied.

— 16 —

o (Ds)

(B.7)

(B.8)

(B.9)
(B.10)

(B.11)



B.2 Boundary states of Dg — Eg theory

There are 36 Ishibashi sates in the Dg — Eg theory (3.2) which satisfy the superconformal
gluing conditions.

T(z)=T(2), G(z)=nGz). (B.12)

Ishibashi states for (r,t,s) module are denoted by |(r,t,s)10)). Since there are two degen-
eracy ( 2 and 2 ) in R-sector, the indices 7,t, s take values in

re{l,3,5,5,7,9}, te{1,2,2,3}, s€{1,4,5,7,8,11}. (B.13)
Note that
|(r,t,8)10)) = |(10 — 7,4 — £, 12 — $)10))- (B.14)

Since the exponents of Dg are all odd number, s is odd in NS-sector and s is even in
R-sector. Taking the above identification into account, s = 1,5 in NS-sector and s = 4
in R-sector.

These Ishibashi states satisfy the relation

(((r,, 8)10]@2 P02 (1 1, 8")10)) = Opt ] ot ) Xop 2 (): (B.15)

[r,t, s] represents an equivalence class under the relation ~ in ([A.4).
Modular S transformation rule of the character Xr,lt(?s is given by

XA ZZZS(S WSUINGD =" 288 8P sUNY) L@ (B.16)
r'=1t=1s'=1 [r' ¢,5']

where Sr(,f? is the S-matrix of §ﬁ(2)1f
Let us introduce the following notation for the states.

apns) = 3 LRI gy ke o),
r€€(Ds), s=1,5 S§ )S§s )
|(1, ba ]/\75> ¢2(D6)w (Eﬁ Tv 178 10 - |(T7 37 8)10>>)7

re&( D6 s=1,5 SS)SSO)

bRy = S Vel oy

re€(Dg), s=4 Sgi) Sgo)
R w (D)5 (E N
S Z 21/4W|(732,8)10>>- (B.17)
re&(Deg), s=4 S&)S%S )

These states satisfy the relations

|a>7(b)7NS> = +|a>7(b)7NS>’ |a77(b),]f\f\g> = +|a>7(b)7j\?‘§>7
ja,7(0), R) = —la,7(b), R),  |a,7(b), R) = —|a,7(b), R). (B.18)
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In particular

la,3,R) = |a,6,R) = |a,3,R) = |a, 6, R) = 0. (B.19)
We introduce the notation ni{tg as open string spectrum between two states |A) and |B)
as follows.
~1 Lo—-<
(AlgzFottom2)|B) = 3 7 nl Exnes(a)- (B-20)
[rt,s]

These n’s between two states in (B.17) can be calculated using the properties on v (B.4).

r,t,s r,t,s

n =
(a,b;NS),(a’ ,b';N S) (a b;NS),(a/ b';NS)

t=2,
B { o (De)ni y (Es) +niy" (De)ny 3 *(Eg)), =13,
nr,t,s o r,t,s
(a,b;R),(a’ 0" R) — (abR) (a’V';R)
5 (1 o (D6)15 (Eo) — ny5" (Ds)ny sy * (Ee)). t=1,
= —3(n o (Do)ng y (Eo) — ngo” (Do) *(Be)), =3,
0, t=2,
Tt _ ) B (nf, ,(De)nj 4y (Es) +”10 T(Dﬁ)nizb/ *(Es)), t=2,
(ab;NS),(a"p'sNS) ] 0, t=1,3,
rt,s o
e 0. (B.21)

For this Dg — Eg theory, we find two consistent sets of 36 boundary states. The first
set, consists of the following 36 boundary states.

type I :|a,b; NS) + |a,b; R), (a=1,3,5,6, b=1,3,5) or (a = 2,4, b=2,4,6),
type IT : V2a,b; N'S), (a,b) = (1,2),(3,2),(5,2),(6,2),(2,1), (4,1),
type III i%la,b;m>+|a,ﬂ(b);§>, (a,b) = (1,6),(3,6),(5,6), (6,6), (2,3), (4,3),
type IV %\a, b: NS) — |a, p(b); R), (a,0) = (1,6),(3,6), (5,6), (6,6), (2,3), (4,3).
(B.22)

Here, p is defined in eq.(B.§). The other set consists of

typei :|a,b; NS) + |a,b; R), (a=1,3,5,6, b=2,4,6) or (a =2,4, b=1,3,5),
type ii : v2|a, by NS), (a,b) = (1,1),(3,1),(5,1),(6,1),(2,2), (4,2),
type iii :%!aab;ﬁ>+\a70(b);§)>7 (a,b) = (1,3),(3,3),(5,3),(6,3),(2,6), (4,6),
type iv : %m, b; ]/V\g> - |a,p(b);§)>, (a,b) = (1,3),(3,3),(5,3),(6,3),(2,6),(4,6).
(B.23)
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The Cardy condition can be checked by using (B.21) and the relations (B.7)—(B.11]). For
the first set of boundary states (B.29), non-zero n’s are

npy* = nh o (De)n y (Es),
np 5 = nh o (De)niy (Be) + nf o (Dg)nysy " (Es),
npTi = nyTy = n o (De)niy (Ee),
NIt = M (D6 )18y o1y (Es)
";111811 = "7}11;V = ng o (De)ny, 1y (E6),
"?Ili,snz = "?éiv = Ng o (D6 i) (£6),
iy = e (De)nltn® o (Es),
iy = nyy (B.24)

(B.24) is still valid for the second set of boundary states (B.23).
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